
Advances in Mathematical

Sciences and Applications

Vol. 28, No. 2 (2019), pp. 313–341

GAKKOTOSHO

TOKYO JAPAN

HOMOGENIZATION OF A MOVING BOUNDARY

PROBLEM WITH PRESCRIBED NORMAL VELOCITY

Michael Eden

Center for Industrial Mathematics,
University Bremen, Germany

(E-mail: eden.michael@uni-bremen.de)

Abstract. The analysis and homogenization of a heat conduction problem with mov-
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1 Introduction

We consider the analysis and the homogenization of a moving boundary problem that
describes phase transitions in two-phase media. The two phases are separated via a sharp
interface whose exact evolution is not known at the outset.

To me more specific, let Ω ⊂ R3 be a bounded domain and let Ω
(1)
ε , Ω

(2)
ε ⊂ Ω be ε-

periodic subdomains representing the initial set-up of the two-phases occupying Ω. Here,
the small parameter ε represents the ratio of the characteristic lengths of the microscale
size of the inhomogeneities of the medium) and the macroscale (overall size of the do-
main). The interface between the competing phases will be denoted by Γε. Due to phase

transitions, this geometrical setup changes with time leading to domains Ω
(i)
ε (t) (i = 1, 2)

and interface Γε(t) at time t. Note that these sets are not necessarily periodic anymore.

With nΓε and VΓε , we denote the normal vector pointing outwards Ω
(2)
ε and the normal

velocity of Γε(t) in normal direction, respectively.

Now, let θ
(i)
ε = θ

(i)
ε (t, x) denote the temperature in the respective domains. In this

work, we consider a two-phase heat problem accounting for latent heat and phase transi-
tions given by

∂tθ
(i)
ε − κ(i)

ε ∆θ(i)
ε = f (i)

ε in Ω(i)
ε (t), (1.1a)

JθεK = 0 on Γε(t), (1.1b)

−Jκε∇θεK · nε = LVΓε on Γε(t), (1.1c)

VΓε = εvε on Γε(t) (1.1d)

complemented with appropriate boundary and initial conditions. We are interested in
high-contrast two-phase problems where the heat conductivity in one-phase is much better
than in the second phase. Similar scenarios (with this particular ε-scaling) were considered
in [CS99, FAZM11, Yeh11]. In linear cases with fixed interface, these kinds of setup can
lead to memory effects (in the form of convolution operators) in the homogenization limit.
We refer to [Aur83, EB14, FM07, Tar90] for examples of this.

The aim of this paper is twofold: (i) show that this two-phase problem admits a unique
local-in-time solution where the interval of existence is independent of the parameter ε
and (ii) investigate the limit behavior ε → 0 thereby establishing an homogenized limit
problem approximating (in some sense) the above system.

For the existence part, we rely on a particularly useful approach, which was originally
introduced in [Han81], which is sometimes called Direct Mapping Method or Hanzawa
transformation, and where a specific coordinate transformation is constructed. Please
note that using this method it is not possible to consider any type of topological changes.
Regarding the limit process in the context of mathematical homogenization, we employ
the notion of (strong) two-scale convergence as introduced in [All92, Ngu89].

Combining the analysis of moving boundary problems with the mathematical homog-
enization leads to significant mathematical and technical challenges. First, the motion of
the interface has to satisfy certain estimates uniformly with respect to the scale parameter
ε. This means that the influence of ε has to be accounted for very carefully. Second, we
have to show strong two-scale convergence of some functions related to the transformation
as the usual two-scale convergence is not sufficient to pass to the limit. This is due to
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the nonlinear structure of the problem which is a consequence of the coupling with the
moving boundary.

Similar moving boundary problems to the system given by equations (1.1a) to (1.1d)
without the heterogeneity parameter ε were considered in, e.g., [Che92, CR92, PSS15].
The heterogeneous case might arise in situations where the spatial scale at which we can
observe such transformations is several orders of magnitude below the size of the overall
medium; typical examples would be phase transitions in porous media or in steel. Such
heterogeneous problems were considered in, e.g., [Eck05, EKK02, Höp16].

For the more general setting of a fully coupled version of System 1.1 where the normal
velocity is not prescribed but given as a function of the temperature and the geometry
of the interface, typical choices would be vε = θε − θcrit (the law of kinetic undercooling)
or vε = −HΓε + θε − θcrit (Gibbs-Thomson undercooling), we refer to [Vis11]. Here, θcrit
denotes the critical temperature of the phase transition in question and HΓε(t) the mean
curvature function of the interface Γε(t). One possible way to tackle such fully coupled
problems is in the context of maximal parabolic regularity, see, e.g., [PS16, PSZ13b]. This,
however, runs into additional troubles in the heterogeneous case due to the extensive ε-
independent regularity estimates that would need to be established; e.g., θε(t) would have
to be uniformly bounded in W 2,∞(Γε(t)).

This work can therefore be seen as an intermediate step in the analysis of the fully
coupled case: in tackling the one-way coupled problem of the moving boundary influencing
the heat distribution, some important aspects of the fully coupled problem (estimates and
convergence) are addressed. The remaining obstacles, mainly the ε-uniform regularity
theory, are, of course, very interesting to consider for future work. In the existing literature
regarding the homogenization of evolving microstructures, the changes in the geometry
are usually assumed to be a priori known (the case of a prescribed coordinate transform),
see [Dob14, EM17, Pet09, vNM11]; a scenario which is easier to tackle.

Please note that the main ideas behind the results of this work can be transferred to
other similar problems where moving boundaries arise in multiscale transmission prob-
lems. Swelling of porous media, degradation of concrete, and growth of tumor tissue
might be prime examples of such scenarios.

We organized this work as follows: In Section 2, we introduce the ε-periodic geometry,
the moving boundary problem with prescribed normal velocity as well as the level set
equation associated with the normal velocity. The main results regarding the moving
boundary problem, Theorems 3.1 to 3.4, are then given in Section 3. Finally, Sections 4
and 5 are dedicated to the detailed proofs of Theorem 3.1 and Theorem 3.2, respectively.

2 Setting and problem statement

2.1 Geometrical setup

Let S = (0, T ), T > 0, represent the time interval of interest and let Ω ⊂ R3 be a bounded
Lipschitz domain whose outer normal vector we denote with ν = ν(x). In addition, let
ε = (εn)n∈N be a monotonically decreasing sequence of positive numbers converging to
zero.
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Now, take open and disjoint sets Y (1), Y (2) ⊂ (0, 1)3 =: Y such that Y (1) is connected,

Y (2) ⊂ Y , and Y = Y (1) ∪ Y (2). Moreover, let Γ := ∂Y (2) be a C3-hypersurface. By
nΓ = nΓ(γ), γ ∈ Γ, we denote the normal vector of Γ pointing outwards of Y (2).

In order to circumvent problems due to complex structures at the boundary, we remove
a boundary layer of thickness ε via

Ω̃ε = Ω ∩

(⋃
k∈Zε

ε(Y + k)

)
, where Zε = {k ∈ Z3 : ε(Y + k) ⊂ Ω}.

Then, we introduce the εY -periodic domains Ω
(i)
ε (i = 1, 2) and the interface Γε repre-

senting the two phases and the phase boundary, respectively, via

Ω(2)
ε = Ω̃ε ∩

(⋃
k∈Z3

ε(Y + k)

)
, Ω(1)

ε = Ω \ Ω
(2)
ε , Γε = ∂Ω(2)

ε .

Note that, by design, ∂Ω
(1)
ε = ∂Ω and dist(∂Ω,Γε) ≥ ε.

With t 7→ Γε(t) and t 7→ Ω
(i)
ε (t) for t ∈ S, we denote the evolution of the interface and

the domains, respectively. We set

Q(i)
ε :=

⋃
t∈S

{t} × Ω(i)
ε (t), Ξε :=

⋃
t∈S

{t} × Γε(t).

Finally, we assume the overall domain Ω to be time-independent; that is Ω = Ω
(1)
ε (t) ∪

Ω
(2)
ε (t) ∪ Γε(t) for all t ∈ S. An illustration of (a two-dimensional slice of) the general

geometrical setup is given in Figure 1.

Figure 1: Illustration of the geometrical setup. Here, the motion function sε(t, ·) charac-
terizes the changes in geometry.

As a C3-hypersurface, Γ admits a tubular neighborhood UΓ ⊂ Y of width a for some
a > 0. Moreover, the function

Λ: Γ× (−a, a)→ UΓ, Λ(γ, s) := γ + snΓ(γ)
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is a C2-diffeomorphism satisfying Λ(Γ × (−a, a)) ⊂ Y ; we refer to [PS16, Section 3.1,
p.65]. Similarly, we introduce the ε-scaled C2-diffeomorphism

Λε : Γε × (−εa, εa)→ UΓε , Λε(γ, r) = γ + rnΓε(γ),

the family of interfaces

Γ(l)
ε := {Λε(γ, l) : γ ∈ Γε} for l ∈ [−εa, εa] , (2.1)

and the family of tubes around Γε

UΓε(r) :=
⋃

l∈(−εra,εra)

Γ(l)
ε for r ∈ (0, 1].

We set UΓε = UΓε(1). For γ ∈ Γε, let LΓε(γ) = −∇ΓεnΓε(γ) denote the Weingarten map,
where we have ([PS16, Section 2.1])

sup
γ∈Γε

|LΓε(γ)| ≤ 1

2εa
. (2.2)

For l ∈ [−εa, εa] and γ ∈ Γ
(l)
ε , the normal vector of the interface Γ

(l)
ε in γ is given as

nΓε(PΓε(γ)), where PΓε : UΓε → Γε denotes the projection operator. The inverse of Λε is
given via

Λ−1
ε : UΓε → Γε × [−εa, εa], Λ−1

ε (x) = (PΓε(x), dΓε(x))T .

Here, dΓε : UΓ → R is the signed distance function for Γε, i.e.,

dΓε(x) =

{
dist(x,Γε), x ∈ UΓε \ Ω

(2)
ε

− dist(x,Γε), x ∈ UΓε ∩ Ω
(2)
ε

.

2.2 Problem statement

For k, l ∈ N, we introduce the Sobolev space

W (k,l),∞(S × Ω) =
{
u ∈ L∞(S × Ω) : ∂itu,D

j
xu ∈ L∞(S × Ω) (1 ≤ i ≤ k, 1 ≤ j ≤ l)

}
and note that W (k,k),∞(S × Ω) = W k,∞(S × Ω).

Now, take θ
(i)
ε = θ

(i)
ε (t, x) (i = 1, 2) to represent the temperature in the respective

domains Q
(i)
ε . In the following, we consider the moving boundary problem given by:

Moving boundary problem with prescribed normal velocity

∂tθ
(1)
ε − κ(1)∆θ(1)

ε = f (1)
ε in Q(1)

ε , (2.3a)

∂tθ
(2)
ε − ε2κ(2)∆θ(2)

ε = f (2)
ε in Q(2)

ε , (2.3b)

θ(1)
ε = θ(2)

ε on Ξε, (2.3c)

−
(
κ(1)∇θ(1)

ε − ε2κ(2)∇θ(2)
ε

)
· nε = LVΓε on Ξε, (2.3d)

VΓε = εvε on Ξε, (2.3e)

−κ(1)∇θ(1)
ε · ν = 0 on S × ∂Ω, (2.3f)

θ(1)
ε (0) = ϑ(1)

ε in Ω(1)
ε , (2.3g)

θ(2)
ε (0) = ϑ(2)

ε in Ω(2)
ε . (2.3h)
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The positive constants κ(1) and ε2κ(2) denote the heat conductivity coefficients of the
phases. As the parameter ε is very small, this is in line with the high-contrast scenario
we are interested in where the conductivity in the connected space Q

(1)
ε is much better

than in the inclusions that make up Q
(2)
ε . The parameter L denotes the constant of latent

heat.
The actual mathematical problem connected to this system is as follows: Given volume

heat source densities f
(i)
ε : Q

(i)
ε → R, a function vε : Ξε → R governing the movement

of the interface, and initial values ϑ
(i)
ε : Ω

(i)
ε → R, find the corresponding evolution of

the domains, i.e., find Ω
(i)
ε (t) and Γε(t) for all t ∈ S, and the temperature functions

θ
(i)
ε : Q

(i)
ε → (0,∞) such that all equations of the above system are satisfied.

In this context, we are interested in weak solutions in the standard Sobolev space
setting for the temperatures. The evolution of the domains, on the other hand, has to
be obtained in a classical sense (in order for the back-transformation to make sense). In
particular, the regularity of the initial interface, i.e., Γε ∈ C3 should be respected by the
transformation, i.e., Γε(t) ∈ C3 as well.

Now, let vε ∈ W (1,2),∞(S ×Ω) be the outward normal velocity of the moving interface
Γε(t). Let us assume that the corresponding motion of Γε can be described via a regular
C1-motion. Then, there exists a level set function ϕε : S × Ω→ R such that

Γε(t) = {x ∈ Ω : ϕε(t, x) = 0} ,
|∇ϕε(t, x)| > 0 on Ξε,

ϕε(t, x) < 0 on ∂Ω.

The normal velocity εvε and the level set function ϕε are connected via ([OF02, Section
4.1])

∂tϕε = ε|∇ϕε|vε on Ξε.

Based on these geometric considerations, we formulate the motion problem as a level set
problem:

Motion problem via level set equation

Find ϕε ∈ C1(S × Ω) such that

∂tϕε = ε|∇ϕε|vε on Ξε, (2.4a)

|∇ϕε(t, x)| > 0 on Ξε, (2.4b)

∂tϕε − ε|∇ϕε|vε
ϕε

∈ W (0,1),∞(S × Ω), (2.4c)

Γε = {x ∈ Ω : ϕε(0, x) = 0}, (2.4d)

Ω(1)
ε = {x ∈ Ω : ϕε(0, x) < 0}. (2.4e)

The family of sets (Γε(t))t∈S defined via

Γε(t) = {x ∈ Ω : ϕε(t, x) = 0}

is called the solution of the motion problem. The condition (2.4c) is a shorthand for: the

function ∂tϕε−ε|∇ϕε|vε
ϕε

: (S×Ω)\Ξε → R can be extended to a function in W (0,1),∞(S×Ω).
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Note that this condition is merely technical in that it is not needed for the level set function
ϕε to correspond to the motion of the interface; it is, however, needed in Lemma 4.4.

We also point out that uniqueness of a solution of the motion problem only asserts
uniqueness of the the family of hypersurfaces (Γε(t))t∈S but not uniqueness of the level
set function ϕε. Indeed, for every α > 0, αϕε corresponds to the same motion problem.

3 Main results

In this section, we present the main results. As some of the proofs are fairly long and
technical, they are postponed to subsequent chapters: Section 4 and Section 5 are devoted
to the proofs of Theorem 3.1 and Theorem 3.2, respectively.

We start by formulating the requirements for the data (normal velocity, source den-
sities, and initial values) that are needed to ensure the well-posedness of the microscopic
problems as well as to facilitate the passage ε→ 0.

(A1) Let vε ∈ W (1,3),∞(S × Ω) with supp(vε) ⊂ UΓε and

lv := sup
ε>0

(
‖vε‖W 1,∞(S×Ω) + ε‖D2

xvε‖∞ + ε2‖D3
xvε‖∞

)
<∞.

(A2) For i = 1, 2, let f
(i)
ε ∈ L2(Q

(i)
ε ) and ϑ

(i)
ε ∈ L2(Ω

(i)
ε ) such that

sup
ε>0

(
‖f (i)

ε ‖L2(Q
(i)
ε )

+ ‖ϑ(i)
ε ‖L2(Ω

(i)
ε )

)
<∞.

(A3) There is a function v ∈ L2(S × Ω;W 1,2
# (Y ))3 satisfying

[vε]
ε → v, [Dvε]

ε → Dyv, ε
[
D2vε

]ε → D2
yv in L2(S × Ω× Y )3.

Here, [vε]
ε : S × Ω × Y → R is the periodic unfolding of vε : S × Ω → R defined via

[vε]
ε (t, x, y) = v

(
t, εy + ε

[
x
ε

])
where [x] denotes the unique k ∈ Z3 for which x − k ∈

[0, 1)3; for details, we refer to [CDG02]. Furthermore, the number sign subscript #
indicates spaces of periodic functions:

W 1,2
# (Y ) = {u ∈ W 1,2

loc (R3) : u|Y ∈ W 1,2(Y ), u(y) = u(ej+y) for a.a. y ∈ Y (j = 1, 2, 3)}.

If [vε]
ε → v in L2(S×Ω×Y ), we say that vε strongly two-scale converges to v (vε

2−str.−→ v);

if [vε]
ε ⇀ v, we say that vε two-scale converges to v (vε

2→ v). The correspondence of this
notion to the usual definition of two-scale convergence (see [All92]) can be found, e.g., in
[CDG08].

The regularity and the estimates postulated via Assumption (A1) ensure well-posedness
of the motion problem given by equations (2.4a) to (2.4e) and the validity of correspond-
ing a priori estimates. With Assumption (A2), these results can be used to tackle the
heat problem given by equations (2.3a) to (2.3h)). Finally, Assumption (A3) is necessary
for the homogenization process.

The following two results, namely, Theorem 3.1 and Theorem 3.2, are the cornerstones
of this work; their proofs are given in Section 4 and Section 5, respectively.
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Theorem 3.1. Under Assumption (A1), there is Tv = T (lv) ∈ S, which is independent
of ε > 0, and a function hε : [0, Tv]× Γε → (−εa, εa) such that

Γε(t) = {γ + hε(t, γ)nΓε(γ) : γ ∈ Γε} (t ∈ [0, Tv]).

The time Tv is increasing for decreasing values of lv and we have (0, Tv) = S for sufficiently
small lv > 0. Also, there is a corresponding, regular C1-motion sε : [0, Tv] × Ω → Ω

satisfying sε(0) = id, sε(t,Ω
(i)
ε ) = Ω

(i)
ε (t) (i = 1, 2), and

‖Dsε‖∞ ≤ 2, ‖ (Dsε)
−1 ‖∞ ≤ 2.

Proof. This follows via Theorem 4.7 and Lemma 4.8. The statements and proof of these
results are given in Section 4.

In the following, we set Sv = (0, Tv).

Theorem 3.2. Under Assumptions (A1), there is s ∈ L∞(Sv × Ω× Y ) with ∂ts, Dys ∈
L∞(Sv × Ω× Y ) such that Dsε

2−str.−→ Dys.

Proof. The proof of this theorem is given in Section 5, see Lemma 5.8.

Using the results given in Theorems 3.1 and 3.2, it is then possible to investigate the
associated heat conduction problem:

Theorem 3.3. Under Assumptions (A1) and (A2), there is a unique solution of the
mathematical problem corresponding to the system given via equations (2.3a) to (2.3h).
In addition, we find that

sup
ε>0

(
‖θε‖2

L∞(Sv ;L2(Ω)) + ‖∇θ(1)
ε ‖2

L2(Sv×Ω
(1)
ε )

+ ε2‖∇θ(2)
ε ‖2

L2(Sv×Ω
(2)
ε )

)
<∞

Proof. Using the transformation function sε (given via Theorem 3.1) to arrive at a fixed-
domain formulation of the problem, we are almost exactly in the situation described
in [EM17] (without the mechanical part).

We set QY =
⋃

(t,x)∈Sv×Ω{(t, x)}×Y (2)(t, x). With 1E, we denote the indicator function
of a set E.

Theorem 3.4. Let Assumptions (A1)–(A3) hold. There are functions θ ∈ L2(Sv;W
1,2(Ω))

and θ(2) ∈ L2 (QY ), where θ(2)(t, x, ·) ∈ W 1,2(Y (2)(t, x)) for almost all (t, x) ∈ Sv×Ω, such
that

1
Ω

(1)
ε
θ(1)
ε ⇀ |Y (1)(t, x)|θ, 1

Ω
(2)
ε
θ(2)
ε ⇀

∫
Y (2)(t,x)

θ(2) dy in L2(S × Ω).

Moreover, they solve the following homogenized distributed microstructure problem: The
macroscopic temperature θ is governed by an effective heat conduction problem given via

∂tθ − div(κh∇θ) = fh + fhΓ in Sv × Ω, (3.1a)

−κh∇θ · ν = 0 on Sv × ∂Ω, (3.1b)

θ(0) = ϑh in Ω, (3.1c)
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which is coupled, via the Dirichlet boundary condition (3.1e), to a micro heat problem
with time dependent microstructures for θ(2) in the form of

∂tθ
(2) − κ(2)∆yθ

(2) = f (2) in Y (2)(t, x), t ∈ Sv, x ∈ Ω, (3.1d)

θ(2) = θ on Γ(t, x), t ∈ Sv, x ∈ Ω, (3.1e)

θ(2)(0) = ϑ(2) in Ω× Y (2). (3.1f)

Finally, the motion of the interface Γ(t, x) in normal direction is governed by

VΓ = v on Γ(t, x), t ∈ Sv, x ∈ Ω. (3.1g)

Here, the effective coefficients are given as

fh =

∫
Y (1)(t,x)

f (1) dy, fΓ =

∫
Γ(t,x)

Lv + κ(2)∇yθ
(2) · n dσ,

ϑh =

∫
Y (1)(t,x)

ϑ(1) dy,
(
κh
)
ij

= κ(1) min
τ∈W 1,2(Y (1)(t,x))

∫
Y (1)(t,x)

(∇yτ + ej) · ei dy,

and f (i), ϑ(i) (i = 1, 2), and v are the two-scale limits of their corresponding ε-counterparts.

Proof. Due to the strong convergence result of Lemma 5.8, this homogenization results
follows via a standard two-scale limit procedure and is a special case of the homogenization
of the thermoelasticity problem performed in [EM17].

4 Interface motion (proof of Theorem 3.1)

This section is devoted to the proof of Theorem 3.1. As a short guideline, this proof
follows the following strategy:

(i) We investigate a nonlinear, parametrized ODE-system – given by equations (4.1a)
to (4.1d) – tracking the interface motion. This is done via Lemmas 4.2 and 4.3.

(ii) We then show that the motion problem given via conditions (2.4a)-(2.4e) has a
unique solution; see Lemma 4.4.

(iii) In Theorem 4.7, the local-in-time existence of the height function hε is then deduced
via the implicit function theorem.

(iv) Finally, we construct a family of C1-diffeomorphisms sε(t, ·) : Ω→ Ω and investigate
its properties; see Lemma 4.8.

The first two steps can be found in Section 4.1, and steps (iii) and (iv) are the topic
of Section 4.2. In the following, we take C > 0 to denote any generic constant that is
independent of both lv and ε (but may depend on the interface Γ = ∂Y (2) as well as the
overall domain Ω). In addition, we take C(lv) (sometimes with a subscript, e.g., Cw(lv))
to denote the value at lv of any monotonically increasing, continuous, and ε-independent
function C : [0,∞)→ (0,∞).

Note that this section is structurally similar to [Che92, Section 3], where the main
substantial differences are due to the parameter ε and its role in the context of homoge-
nization.



322

4.1 Interface motion problem

We consider the following nonlinear ODE system:

ODE system describing the interface motion

Find yε, zε : S × UΓε → R3 such that

∂tyε(t, x) = −ε zε(t, x)

|zε(t, x)|
vε(t, yε(t, x)) in S × UΓε , (4.1a)

∂tzε(t, x) = ε|zε(t, x)|∇vε(t, yε(t, x)) in S × UΓε , (4.1b)

yε(0, x) = x in UΓε , (4.1c)

zε(0, x) = −nΓε(PΓεx) in UΓε . (4.1d)

We extend every solution yε to all of Ω by setting yε(t, x) = x. Due to supp vε ⊂ UΓε ,
yε is then continuous across ∂UΓε .

Remark 4.1. In Lemma 4.4, we show that the function yε characterizes the interface
motion in the sense that Γε(t) = yε(t,Γε). The function zε describes the direction of
the motion. This is illustrated in Figure 2. Note that, if ∇vε ≡ 0, the solution satisfies
yε(t, γ) = γ + dΓε(yε(t, γ))nΓε(γ) for all γ ∈ Γ.

Γε

Γε(t)

γ

nΓε(γ)

PΓε
(yε(t, γ))

zε(t, γ)
yε(t, γ)

Figure 2: Part of the surface Γε and its position at time t, Γε(t). The function yε char-
acterizes the motion by tracking the paths of the material points. As an example, we see
the path of yε for γ = yε(0, γ) over the interval (0, t). In addition, we see the change in
the normal vector from nΓe(γ) = zε(0, γ) to zε(t, γ). The goal is to find the corresponding
height function hε that satisfies hε(PΓε(yε(t, γ))) = dΓε(yε(t, γ)).

We introduce functions

fε : S ×
(
R3 × R3 \ {0}

)
→ R3 × R3, fε(t, (y, z)) =

(
z

|z|
vε(t, y), |z| ∇vε(t, y)

)T
,

gε : Ω→ R3 × R3, gε(x) = (x,−nΓε(PΓε(x)))T .
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Setting wε = (yε, zε)
T , equations (4.1a) to (4.1d) then become

∂twε(t, x) = εfε (t, wε(t, x)) in S × UΓε , (4.2a)

wε(0, x) = gε(x) in UΓε . (4.2b)

Lemma 4.2. Let Assumption (A1) hold. The ODE system given via equations (4.1a)
to (4.1d) admits a unique solution (yε, zε) ∈ W (1,2),∞(S × UΓε)

6. Additionally, there
exists a monotonically increasing, continuous function Cw : [0,∞) → (0,∞), which is
independent of the parameter ε, such that

‖Dxyε − I‖∞ + ‖∂tDxyε‖∞ + ε‖D2
xyε‖∞ ≤ lvCw(lv),

ε‖Dxzε‖∞ + ε2‖D2
xzε‖∞ ≤ Cw(lv).

Proof. (i) Existence and Uniqueness. Due to the embedding W k,∞(UΓε) = Ck−1,1(UΓε)
(k ≥ 1) (we refer to [HKT08, Theorem 7]) we have vε, ∂jvε ∈ C1,1(S × UΓε) (j = 1, 2, 3)
which, in turn, implies fε ∈ C1,1 (S × (R3 ×K)) for every compact set K ⊂ R3 \ {0}.
Therefore, for every x ∈ Ω, Picard-Lindeloef ’s existence theorem ([Zei86, Proposition
1.8]) guarantees the existence of a time tε(x) ∈ S and a unique solution wε(·, x) =
(yε(·, x), zε(·, x))T ∈ C1,1([0, tε(x)])6. Note that |zε(0, x)| = 1 independently of x ∈ UΓε .
Taking a look at equation (4.1b), we see that

−εtlv ≤
∫ t

0

∂t(zε · ej)
|zε|

dτ ≤ εtlv (j = 1, 2, 3).

The norm of every solution zε is therefore bounded from below and above via

e−εlvt ≤ |zε(t, x)| ≤ eεlvt. (4.3)

As a consequence, a blow up due to |zε| → 0 is not possible in finite time and we can
extend to wε(·, x) ∈ C1,1(S)6 for x ∈ UΓε .

(ii) Regularity and Estimates. For any x1, x2 ∈ UΓε , we find that

wε(t, x1)− wε(t, x2) = gε(x1)− gε(x2) +

∫ t

0

fε(τ, wε(τ, x1))− fε(τ, wε(τ, x1)) dτ.

From gε ∈ C2(UΓε), the Lipschitz continuity of fε as well asDfε, and Gronwall’s inequality,
we can infer wε(t, ·) ∈ W (1,2),∞(S × UΓε)

6.
In the following, let ε > 0 be sufficiently small such that 1/

√
2 ≤ ‖zε‖∞ ≤

√
2 (cf. in-

equality (4.3)). Differentiating the ODE with respect to x ∈ UΓε , we get

∂tDwε(t, x) = εDx (fε (t, wε(t, x))) . (4.4)

We define Aε : S × (R3 × R3 \ {0})→ R6×6 via

Aε(t, (y, z)) := D(y,z)fε (t, (y, z)) =

(
z
|z| ⊗∇vε(t, y) vεB(z)

|z|D2vε(t, y) ∇vε(t, y)⊗ z
|z|

)
,
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where B : R3 \ {0} → R3×3 is given via

B(z) = D

(
z 7→ z

|z|

)
=

1

|z|3

z2
2 + z2

3 −z1z2 −z1z3

−z1z2 z2
1 + z2

3 −z2z3

−z1z3 −z2z3 z2
1 + z2

2

 . (4.5)

Equation (4.4) can be rewritten into

∂tDwε(t, x) = εAε(t, wε(t, x))Dwε(t, x). (4.6)

With the estimate ‖B(z)‖ ≤
√

2/|z| (Frobenius-Norm), the estimate for zε given by in-
equality (4.3), and Assumption (A1), we get (for sufficiently small ε)

ε|Aε(t, (yε, zε)| ≤ lv(3ε+
√

2) ≤ 2lv. (4.7)

For the initial values of the Jacobian matrices, we have (for the derivative of nΓε(PΓε(x)),
we refer to [PS16, Chapter 2, Section 3.1])

Dyε(0, x) = I3,

Dzε(0, x) = D (nΓε(PΓε(x))) = −LΓε(PΓε(x)) (I− dΓε(x)LΓε(PΓε(x)))−1 .

As |Dzε(0, x)| ≤ C/ε for some C > 0, we can deduce estimate via Gronwall’s inequality
that

ε |Dwε(t, x)| ≤ C exp(2T lv) =: C1(lv). (4.8)

For yε, we have

Dyε(t, x) = I3 + ε

∫ t

0

(
A(11)
ε (t, wε(τ, x))Dyε(τ, x) + A(12)

ε (t, wε(τ, x))Dzε(τ, x)
)

dτ. (4.9)

Inserting the estimate given in inequality (4.8) into equation (4.9), we see that

|Dyε(t, x)| ≤ 1 + 3TC1(lv)lv. (4.10)

Looking at equation (4.9) and using the estimate for Aε (cf. inequality (4.7)), we get (for
small ε)

|∂tDyε(t, x)| ≤ 3C1(lv)lv. (4.11)

Similarly, differentiating Dwε with respect to xj (j = 1, 2, 3) and estimating the different
terms accordingly, we also get

ε2|∂jDwε(t, x)| ≤ C2(lv). (4.12)

With this estimate, we can further bound |∂xiDyε(t, x)| via

|∂xiDyε(t, x)| ≤ lvC3(lv). (4.13)

The details regarding these calculations are given in [Ede18, Lemma 6.6]. Now, combining
inequalities (4.8) and (4.10) to (4.13), the function Cw can be directly constructed via
Cj(lv) (j = 1, 2, 3).
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Note that lvCw(lv) → 0 for lv → 0. In the following lemma, we show that yε(t, ·) is
a homeomorphism (a minimal requirement for it to correspond to a meaningful transfor-
mation) for t ∈ S small enough. Moreover, for small lv, this holds for all t ∈ S.

Lemma 4.3. There is a monotonically decreasing and continuous function δ : (0,∞) →
(0,∞) (we set tv = min{δ(lv), T}) such that:

(i) The function yε(τ, ·) : UΓε → yε (τ, UΓε) is a Lipschitz homeomorphism for all τ ∈
[0, tv].

(ii) For t ∈ [0, tv], let
y−1
ε,t : yε(t, UΓε)→ UΓε

be the unique function that satisfies y−1
ε,t (yε(t, x)) = x for all x ∈ UΓε . The function

y−1
ε :

⋃
t∈[0,tv ]

(
{t} × yε(t, UΓε)

)
→ UΓε , y−1

ε (t, w) := y−1
ε,t (w)

is Lipschitz continuous with respect to t ∈ [0, tv].

Proof. (i). We recall the characterization of Dyε established in the proof of the preceding
lemma, i.e., equation (4.9):

Dyε(t, x) = I3 + ε

∫ t

0

(
A(11)
ε (t, wε(τ, x))Dyε(τ, x) + A(12)

ε (t, wε(τ, x))Dzε(τ, x)
)

dτ.

From here, we conclude that

‖Dyε(t, ·)− I3‖∞ ≤ 3tlvC1(lv) for all t ∈ S.

This shows (employing the Neumann series) that yε(t, ·) : UΓε → yε(t, UΓε) is a Lipschitz
homeomorphism for all t ∈ [0, tv] where tv = min{(4lvC1(lv))

−1, T}. Here, the function δ
is given via (4lvC1(lv))

−1.

(ii). It holds yε(t, y
−1
ε (t, x)) = x for all (t, x) ∈

⋃
t∈[0,tv ] ({t} × yε(t, UΓε)). Implicit

differentiation leads to

∂t
(
yε(t, y

−1
ε (t, x))

)
= ∂tyε(t, y

−1
ε (t, x)) +Dyε(t, y

−1
ε (t, x))∂ty

−1
ε (t, x) = 0

and, therefore,

∂ty
−1
ε (t, x) = −

(
Dyε(t, y

−1
ε (t, x))

)−1
∂tyε(t, y

−1
ε (t, x))

= ε
(
Dyε(t, y

−1
ε (t, x))

)−1 zε(t, y
−1
ε (t, x))

|zε(t, y−1
ε (t, x))|

vε(t, yε(t, y
−1
ε (t, x))). (4.14)

As the right hand side is bounded by virtue of the estimates provided in Lemma 4.2, this
implies Lipschitz continuity of y−1

ε with respect to t ∈ [0, tv].

With the following lemma, we show that any solution of the motion problem given by
equations (2.4a) to (2.4e) can be characterized via yε and that, indeed, there is a unique
solution to the motion problem.
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Lemma 4.4. (i) Let {Γε(t)}t∈[0,tv ] be a solution of the free boundary problem given by
equations (2.4a) to (2.4e). Then, for all t ∈ [0, tv], Γε(t) = yε(t,Γε).

(ii) There is a unique solution to the motion problem posed in the time interval [0, tv].

Proof. (i). This is shown in [Che92, Lemma 3.2] using the method of characteristics.
(ii). This proof follows closely along the lines of [Che92, Theorem 3.1] adapting the

ideas to our setting. We introduce a Lipschitz continuous function ϕ̃ε : [0, tv] × Ω →
[−εa, εa] via (as a reminder: Γ

(l)
ε = {Λε(γ, l) : γ ∈ Γε}, see equation (2.1))

ϕ̃ε(t, x) =


−εa, x ∈ Ω

(1)
ε \ yε(t, UΓε)

−l, x ∈ yε(t,Γ(l)
ε ) for some l ∈ (−εa, εa)

εa, y ∈ Ω
(2)
ε \ yε(t, UΓε)

.

In the same way as in [Che92, Theorem 3.1], it can be shown that

∇ϕ̃ε(t, x) = zε(t, y
−1
ε (t, x)) for all x ∈ yε(t, UΓε), t ∈ [0, tv]

and, therefore,

eεlvt ≥ |∇ϕ̃ε(t, x)| ≥ e−εlvt for all x ∈ yε(t, UΓε), t ∈ [0, tv] (4.15)

as well as

∂tϕ̃ε(t, y) = ε|∇ϕ̃ε(t, y)|vε(t, y) in
⋃

t∈[0,tv ]

({t} × yε(t, UΓε)) . (4.16)

Due to the Lipschitz continuity of the involved derivatives, we get

ϕ̃ε ∈ W (2,2),∞

 ⋃
t∈[0,tv ]

({t} × yε(t, UΓε))

 .

Now, let g : R → [0, 1] be a C2-function such that g(0) = 0, g′(0) = 1, g′(r) = 0 if
r /∈ (−a/2, a/2), and |g′′| ≤ 3/a. We introduce ϕε = εg ◦ (ε−1ϕ̃ε) ∈ W (2,2),∞([0, tv] × Ω).
Then, ϕε = 0 if and only if ϕ̃ε = 0 which implies

Γε = {x ∈ Ω : ϕε(0, x) = 0}.

and
{x ∈ Ω : ϕε(t, x) = 0} = yε(t,Γε) for all t ∈ [0, tv].

It then can easily be checked that ϕε satisfies the conditions of the motion problem given
by equations (2.4a) to (2.4e).

Lemma 4.5. There is a continuous function Cϕ : [0,∞)→ (0,∞) such that

ε−1‖∂tϕ̃ε‖∞ + ‖∂t∇ϕ̃ε‖∞ ≤ lvCϕ(lv),

‖∇ϕ̃ε‖∞ + ε‖D2ϕ̃ε‖∞ ≤ Cϕ(lv).
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Proof. In this proof, we rely on the estimates provided in Lemma 4.2. Let t ∈ [0, tv] and
x ∈ yε(t, UΓε). The second spatial derivative is given as

D2ϕ̃ε(t, x) = (Dyε(t, y
−1
ε (t, x)))−1Dzε(t, y

−1
ε (t, x))

and can therefore be estimated via∣∣D2ϕ̃ε(t, x)
∣∣ ≤ 4

ε
Cw(lv).

Here, Cw is the function given by Lemma 4.2. Furthermore, as ϕ̃ε satisfies inequality (4.15)
and equation (4.16), we can estimate

|∂tϕ̃ε(t, x)| ≤ ε|∇ϕ̃ε(t, x)||vε(t, x)| ≤ εeεlvtlv.

Taking the derivative with respect to x ∈ yε(t, UΓε) in equation (4.16), we get

∂t∇ϕ̃ε(t, x) = ε|∇ϕ̃ε(t, x)|∇vε(t, x) + εD2ϕ̃ε(t, x)
∇ϕ̃ε(t, x)

|∇ϕ̃ε(t, x)|
|vε(t, x)|

and find the upper bound

|∂t∇ϕ̃ε(t, x)| ≤ lv
(
ε0e

ε0lvtv + 4Cw(lv)
)
.

4.2 Motion function

For ε > 0 and γ ∈ Γε, we introduce the function Fε,γ : [0, tv] × (−εa, εa) → R via
Fε,γ(t, r) = ϕε(t,Λε(γ, r)). Then, Fε,γ(0, 0) = ϕε(0,Λε(γ, 0)) = 0 for all γ ∈ Γε.

Lemma 4.6. For all ε > 0 and γ ∈ Γε, it holds ∂2Fε,γ(0, 0) = −1. Furthermore, there
are t̃v ∈ [0, tv] and 0 < Rv < a such that ∂2Fε,γ(t, r) ≤ −1/3 for all t ∈ [0, t̃v] and
r ∈ [−εRv, εRv].

Proof. We calculate

∂2Fε,γ(t, r) = g′(ε−1ϕ̃ε(t,Λε(γ, r)))∇ϕ̃ε(t,Λε(γ, r)) · nΓε(γ) (4.17)

and see that
∂2Fε,γ(0, 0) = −1 < 0.

For any t ∈ [0, tv] and r ∈ (−εa, εa), we have

∂2Fε,γ(t, r) = −1 +

∫ r

0

∂2
2Fε,γ(0, s) ds+

∫ t

0

∂t∂2Fε,γ(τ, r) dτ.

Starting off with the first integrand, ∂2
2Fε,γ, we get

∂2
2Fε,γ(t, r) = ε−1g′′(ε−1ϕ̃ε(t,Λε(γ, r))) (∇ϕ̃ε(t,Λε(γ, r)) · nΓε(γ))2

+D2ϕ̃ε(t,Λε(γ, r))nΓε(γ) · nΓε(γ).
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Using the estimates collected in Lemma 4.5, we can conclude that

ε
∣∣∂2

2Fε,γ(t, r)
∣∣ ≤ 3

a
e2εlvt + Cϕ(lv).

For the second integrand, ∂t∂2Fε,γ, we calculate

∂t∂2Fε,γ(t, r) = ε−1g′′(ε−1ϕ̃ε(t,Λε(γ, r)))∂tϕ̃ε(t,Λε(γ, r))∇ϕ̃ε(t,Λε(γ, r)) · nΓε(γ)

+ g′(ε−1ϕ̃ε(t,Λε(γ, r)))∂t∇ϕ̃ε(t,Λε(γ, r)) · nΓε(γ),

estimate

|∂t∂2Fε,γ(t, r)| ≤
3

a
lvCϕ(lv) (Cϕ(lv) + 1) ,

and finally arrive at

∂2Fε,γ(t, r) ≤ −1 +
r

ε

(
3

a
e2ε0lvt + Cϕ(lv)

)
+ tlv

(
3

a
Cϕ(lv) (Cϕ(lv) + 1)

)
.

Theorem 4.7 (Height function). There is a time Tv ∈ (0, τv] monotonically decreasing
with respect to lv and such that Tv = T for lv sufficiently small such that:

(i) There is a height function hε : Γε × [0, Tv]→ (−εa, εa) satisfying

Γε(t) = {Λε(γ, hε(t, γ)) : γ ∈ Γε} for all t ∈ [0, Tv].

(ii) It holds the estimate

5

εa
‖hε‖L∞((0,Tv)×Γε) + 2‖∇Γεhε‖L∞((0,Tv)×Γε) ≤

1

2
.

Moreover, ‖∂thε‖∞ ≤ 3εlvCϕ(lv).

Proof. (i). Note that Fε,γ(0, 0) = 0 and ∂2Fε,γ(0, 0) = −1. By the Implicit Function
Theorem ([Zei86, Theorem 4.B], we infer that, for every ε > 0 and for every γ ∈ Γε,
there is a time τε,γ > 0 and a differentiable function hε,γ : [0, τε,γ] → (−εa, εa) such that
Fε,γ(t, hε,γ(t)) = 0 for all t ∈ [0, τε,γ]. Let τε,γ ∈ S always be the maximal possible point
in time for this to be true. It holds that

sup{|hε,γ(t)| : γ ∈ Γε} = sup{|dΓε(yε(t))| : γ ∈ Γε} ≤ εtlv for all t ∈ [0, τε,γ],

Here, the equality holds due to

Γε(t) = {Λε(γ, hε,γ(t)) : γ ∈ Γε} = {yε(t, γ) : γ ∈ Γε}.

And, for the inequality, we observe that yε(0, γ) ∈ Γε and that yε satisfies equation (4.1a).
Now, take τv = min{tv, l−1

v Rv}. We claim that

inf{τε,γ : ε > 0, γ ∈ Γε} ≥ τv.
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Let us assume this is not the case, i.e., there are ε > 0 and γ ∈ Γε such that τε,γ < τv.
Since

(i) Fε,γ(τε,γ, hε,γ(τε,γ)) = 0,

(ii) ∂2Fε,γ(τε,γ, hε,γ(τε,γ)) < −
1

3
,

we can apply the Implicit Function Theorem again which contradicts the assumption that
τε,γ is maximal. Here, (ii) holds true by virtue of Lemma 4.6. As a consequence, we are
able to define hε : [0, τv]× Γε → (−εa, εa) via hε(t, γ) := hε,γ(t).

(ii). Owing to the regularity of Λε and ϕε, we have hε ∈ W 2,∞((0, T ) × Γε). For all
t ∈ [0, τv] and γ ∈ Γε, we have Fε,γ(t, hε(t, γ)) = 0 implying vanishing derivatives with
respect to time and space. Implicit differentiation with respect to time yields

∂thε(t, γ) = −∂tFε,γ(t, hε(t, γ))

∂2Fε,γ(t, hε(t, γ))
. (4.18)

Considering that ‖g′‖∞ ≤ 1, we are therefore led to

|∂thε(t, γ)| ≤ 3 |∂tϕ̃ε(t,Λε(γ, hε(t, γ)))| ≤ 3εlvCϕ(lv).

Let us first observe that ∇Γεhε(t, γ) = 0 if and only if

nΓε(t,Λε(γ, hε(t, γ)) = nΓε(γ).

The normal vector at γ ∈ Γε(t) is given as

nΓε(t, γ) =
∇ϕε(t, γ)

|∇ϕε(t, γ)|
=
∇ϕ̃ε(t, γ)

|∇ϕ̃ε(t, γ)|
.

For the surface gradient of hε, we can find the representation (we point to [PS16, Section
2.5])

∇Γεhε(t, γ) = (I3 − hε(t, γ)LΓε(γ))

(
nΓε(γ)− 1

nΓε(t, γt) · nΓε(γ)
nΓε(t, γt)

)
, (4.19)

where we have set γt = yε(t, γ). Due to

nΓε(t, γt) = nΓε(γ) +

∫ t

0

∂t∇ϕ̃ε(t, γt)|∇ϕ̃ε(t, γt)| − ∇ϕ̃ε(t, γt)∂t|∇ϕ̃ε(t, γt)|
|∇ϕ̃ε(t, γt)|2︸ ︷︷ ︸

=:Φε(τ,γt)

dτ,

we estimate

|nΓε(γ)− nΓε(t, γt)| ≤
∫ t

0

|Φε(τ, γt)| dτ ≤ 2tlve
3ε0lvtCϕ(lv),

and (for t small enough, but independent of ε and decreasing with increasing lv)

0 < 1− 2te3εlvtlvCϕ(lv) ≤ nΓε(γ) · nΓε(t, γt) ≤ 1.
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Combining these estimates to bound the difference

nΓε(γ)− 1

nΓε(t, γt) · nΓε(γ)
nΓε(t, γt)

= nΓε(γ)− nΓε(t, γt) +
nΓε(t, γt) · nΓε(γ)− 1

nΓε(t, γt) · nΓε(γ)
nΓε(t, γt),

we are led to∣∣∣∣nΓε(γ)− 1

nΓε(t, γt) · nΓε(γ)
nΓε(t, γt)

∣∣∣∣ ≤ 2tlve
3ε0lvCϕ(lv)

(
1 +

∞∑
k=0

(
2tlve

3ε0lvtCϕ(lv)
)k)

.

In summary, estimating equation (4.19) leads us to

|∇Γεhε(t, γ)| ≤
(

1 +
tlv
2a

)(
2te3ε0lvtlvCϕ(lv)

(
1 +

∞∑
k=0

(
2tlve

3ε0lvtCϕ(lv)
)k))

.

Let χ ∈ D(R≥0) be a cut-off function that satisfies

0 ≤ χ ≤ 1, χ(r) = 1 if r <
1

3
, χ(r) = 0 if r >

2

3
.

In addition, let χ′(r) < 0 if 1/3 < r < 2/3 as well as ‖χ′‖∞ ≤ 4. We introduce the
function sε : [0, Tv]× Ω→ Ω via

sε(t, x) =

{
x+ hε(t, PΓε(x))nΓε(PΓε(x))χ

(
dist(x,Γε)

εa

)
, x ∈ UΓε

x, x /∈ UΓε

. (4.20)

Lemma 4.8. The function sε : [0, Tv] × Ω → Ω is a regular C1-motion with Γε(t) =
sε(t,Γε) for all t ∈ [0, Tv].

Proof. With the estimates provided in Theorem 4.7, we can conclude that sε(t, ·) : Ω→ Ω
is a regular C1-deformation with Γε(t) = sε(t,Γε) for all t ∈ [0, Tv]. For details, we refer
to [Ede18, Lemma 2.9]. The regularity with respect to time follows via hε ∈ C1,1([0, Tv]×
Ω).

5 Limit behavior (proof of Theorem 3.2)

In this section, we investigate the limit behavior of the functions related to the Hanzawa
transformation sε as given by Lemma 4.8, in particular Fε = Dsε and Jε = detFε. To be
able to pass to the limit ε → 0, strong two-scale convergence of these quantities has to
be established. We start by introducing the folding and unfolding operators, similar (in
spirit) considerations can be found, e.g., in [MCP08], and by formulating a few technical
lemmas.

In an effort to keep the notations for the estimations shorter, we introduce functions

qε : Sv × UΓε → R3, qε(t, x) := zε(t, y
−1
ε (t, x)), (5.1a)

ηε : Sv × Γε → Ω, ηε(t, γ) := Λε(γ, hε(t, γ)). (5.1b)
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5.1 Preliminaries and auxiliary lemmas

1 2 3 4

1

2 x

[x]
{x}

Figure 3: Simple example demonstrating the construction of [x] and {x}.

For x ∈ R3, [x] is defined to be the unique k ∈ Z3 such that {x} := x − [x] ∈ [0, 1)3

and, for functions f : Ω → R and fb : Γε → R, we denote the periodic unfolding via
[f ]ε : Ω× Y → R and [fb]

ε : Ω× Γ→ R defined by

[f ]ε (x, y) = f
(
εy +

[x
ε

])
, [fb]

ε (x, γ) = fb

(
εγ +

[x
ε

])
.

We get the integral identities (see [CDG02])∫
Ω

f(x) dx =

∫
Ω×Y

[f ]ε (x, y) d(x, y),∫
Γε

fb(x) dx =
1

ε

∫
Ω×Γ

[fb]
ε (x, y) d(x, y)

and, for id : Ω→ Ω and n,m ∈ N, it holds

|[id]εn − [id]εm| ≤
√

2 (εn + εm) . (5.2)

In addition, for functions g : Ω× Y → R and gb : Ω× Γ→ R, we set

[g]ε : Ω→ R, [g]ε (x) = g
(
x,
{x
ε

})
,

[gb]ε : Γε → R, [gb]ε (x) = gb

(
x,
{x
ε

})
.

We find that, f ∈ W 1,2(Ω;W 1,2
# (Y )),

∥∥f − [[f ]ε]
ε
∥∥2

L2(Ω×Y )
→ 0 (5.3)

as
(
εy + ε

[
x
ε

]
,
[
y +

[
x
ε

]])
converges uniformly to (x, y).
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The following identities are a consequence of the periodicity of the initial configuration.
For x ∈ UΓε , y ∈ Y , γ ∈ Γ, and r ∈ (−εa, εa), it holds

[nε]
ε (x, γ) = n(γ), (5.4a)

[Λε]
ε (x, γ, r) = εΛ

(
γ,
r

ε

)
+ ε

[x
ε

]
, (5.4b)

[LΓε ]
ε (x, γ) = ε−1LΓ(γ), (5.4c)

[PΓε ]
ε (x, y) = εPΓ(y) + ε

[x
ε

]
, (5.4d)

[DPΓε ]
ε (x, y) =

(
I− dΓ(y)LΓ(PΓ(y))

)−1
(I− n(PΓ(y))⊗ n(PΓ(y))) . (5.4e)

With these relations in mind, we are able to connect the limit behavior of the auxiliary
function ηε and the height function hε.

Lemma 5.1. Let n, m ∈ N. It holds∣∣ε−1
n [ηεn ]εn − ε−1

m [ηεm ]εm
∣∣ ≤ ∣∣ε−1

n [hεn ]εn − ε−1
m [hεm ]εm

∣∣
as well as∣∣ [Dηεn ]εn − [Dηεm ]εm

∣∣ ≤ 1

2a

∣∣ε−1
n [hεn ]εn − ε−1

m [hεn ]εn
∣∣+
∣∣ [∇hεn ]εn − [∇hεm ]εm

∣∣.
Proof. Since Λ is contractive and equations (5.4a) and (5.4b) hold, we conclude∣∣ε−1

n [ηεn ]εn − ε−1
m [ηεm ]εm

∣∣
=
∣∣Λ (γ, ε−1

n [hεn ]εn
)
− Λ(γ, ε−1

m [hεm ]εm)
∣∣ ≤ ∣∣ε−1

n [hεn ]εn − ε−1
m [hεm ]εm

∣∣.
The spatial derivative of ηε is given as

DΓεηε = Id +∇Γεhε ⊗ nε − hεLΓε .

Using equations (5.4a) to (5.4c), we estimate∣∣ [DΓεηεn ]εn − [DΓεηεm ]εm
∣∣ ≤ ∣∣[∇Γεn

hεn
]εn − [∇Γεm

hεm
]εm∣∣+ 1

2a

∣∣ε−1
n [hεn ]εn − ε−1

m [hεn ]εn
∣∣.

In the next few lemmas, we establish some technical results which are needed to show
the strong two-scale convergence of Fε and Jε.

Lemma 5.2. (i) Let uε ∈ W 1,2(Ω) and u ∈ L2(Ω;W 1,2
# (Y )) such that [uε]

ε → u and
ε [∇uε]ε → ∇yu strongly in L2(Ω× Y ). Then, [uε]

ε → u strongly in L2(Ω× Γ).

(ii) For all u ∈ W 1,2(Ω), it holds that

ε‖u‖2
L2(Γε(t)) ≤ 4Ctr

(
‖u‖2

L2(Ω) + ε2‖∇u‖2
L2(Ω)

)
.



333

Proof. (i). This is due to the trace embedding operator W 1,2(Y ) ↪→ L2(Γ).
(ii). Let Ctr be the trace constant of the embedding W 1,2(Ω) ↪→ L2(Γε). For u ∈

W 1,2(Ω) and t ∈ [0, Tv], we have

ε

∫
Γε(t)

|u(γ)|2 dγ = ε

∫
Γε

|u(yε(t, γ))|2| det(DΓεyε(t, γ))| dγ

≤ 2Ctr

(∫
Ω

|u ◦ yε(x)|2 dx+ ε2

∫
Ω

|∇(u ◦ yε)(x)|2 dx

)
≤ 2Ctr

(∫
Ω

|u ◦ yε(x)|2 dx+ 2ε2

∫
Ω

|∇u ◦ yε(x)|2 dx

)
.

The time parametrized coordinate transformation x 7→ y−1
ε (t, x) (note that y−1

ε (t,Ω) = Ω)
then leads to

ε‖u‖2
L2(Γε(t)) ≤ 4Ctr

(
‖u‖2

L2(Ω) + ε2‖∇u‖2
L2(Ω)

)

Parts of the analysis rely on the ability to estimate certain differences of some com-
posites of functions involving yε. In the following lemma, we collect some general results.

Lemma 5.3. Let (fε) ⊂ W 1,∞(Ω) and n,m ∈ N (n > m).

1. Let ‖∇fεm‖∞ be bounded independently of the parameter ε and [fε]
ε be a Cauchy

sequence. Then, there are C,Cm > 0 such that

‖fεn([yεn ]εn)− fεm([yεm ]εm)‖L2(Ω×Y ) ≤ Cm + C
∥∥ [yεn ]εn − [yεm ]εm

∥∥2

L2(Ω×Y )
.

and such that limm→∞Cm = 0.

2. Let f ∈ W 1,∞(Ω;W 1,∞
# (Y )) such that [fε]

ε → f . For gε = yε or gε = y−1
ε , we can

estimate

‖fεn([gεn ]εn)− fεm([gεm ]εm)‖2
L2(Ω×Y )

≤ Cm + C
(∥∥ [gεn ]εn − [gεm ]εm

∥∥2

L2(Ω×Y )
+
∥∥ε−1

n [gεn ]εn − ε−1
m [gεm ]εm

∥∥2

L2(Ω×Y )

)
where C,Cm > 0 and limm→∞Cm = 0.

3. Let f ∈ W 1,∞(Ω;W 1,∞
# (Y )) such that [fε]

ε → f and ε [∇fε]ε → ∇yf . Then, we
estimate

‖fεn([ηεn ]εn)− fεm([ηεm ]εm)‖2
L2(Ω×Γ)

≤ Cm + C
(∥∥ [hεn ]εn − [hεm ]εm

∥∥2

L2(Ω×Γ)
+
∥∥ε−1

n [hεn ]εn − ε−1
m [hεm ]εm

∥∥2

L2(Ω×Γ)

)
where C,Cm > 0 and limm→∞Cm = 0.

Proof. Proofs of these technical estimates are given in [Ede18, Lemma 6.20].
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5.2 Limit behavior

Based on the estimates established via Lemma 4.2, it is clear that yε converges strongly to
the identity operator and that both Dyε and zε have two-scale converging subsequences.
This in itself, however, is not enough to guarantee strong convergence of their unfolded
counterparts, which in consequence may also impede strong convergence of [Fε]

ε and [Jε]
ε

– a property that is needed to make sure that passing to the limit ε→ 0 is justified.
In the following lemma, we investigate the limit behavior of the dilated functions

ε−1 [yε − Id]ε and [zε]
ε.

Lemma 5.4. There exist functions y, z ∈ L2(S × Ω;H1
#(Y ))3 such that

1

ε
[yε − Id]ε → y − Id, [zε]

ε → z, [Dyε]
ε → Dyy, ε [Dzε]

ε → Dyz.

Proof. Let δ > 0 be given and let n,m ∈ N, such that n > m and eεmlvTv < 2.∗ Taking a
look at the ODE sytem given by equations (4.1a) to (4.1d) and its corresponding system
that emerges by differentiation with respect to the spatial variable, we find that (in
S × Ω× Σ, (i = n,m))

ε−1
i ∂t [yεi − Id]εi =

[zεi ]
εi

| [zεi ]
εi |
vεi([yεi ]

εi), (5.5a)

∂t [zεi ]
εi = εi

∣∣ [zεi ]εi ∣∣∇vεi([yεi ]εi), (5.5b)

∂t [Dyεi ]
εi = εiA

(11)
εi

([wεi ]
εi) [Dyεi ]

εi + εiA
(11)
εi

([wεi ]
εi) [Dzεi ]

εi , (5.5c)

εi∂t [Dzεi ]
εi = ε2

iA
(21)
εi

([wεi ]
εi) [Dyεi ]

εi + ε2
iA

(22)
εi

([wεi ]
εi) [Dzεi ]

εi . (5.5d)

Now, subtracting these equations for i = n and i = m from one another, multiplying with
the corresponding differences, and integrating over Ω× Y , we are led to

d

dt

∥∥ε−1
n [yεn − Id]εn − ε−1

m [yεm − Id]εm
∥∥2

L2(Ω×Y )

≤ 2

∫
Ω×Y

∣∣∣ [zεn ]εn

| [zεn ]εn |
vεn([yεn ]εn)− [zεm ]εm

| [zεm ]εm |
vεm([yεm ]εm)

∣∣∣∣∣∣ε−1
n [yεn − Id]εn − ε−1

m [yεm − Id]εm
∣∣∣ d(x, y), (5.6a)

d

dt

∥∥ [zεn ]εn − [zεm ]εm
∥∥2

L2(Ω×Y )

≤ 2

∫
Ω×Y

∣∣∣εn∣∣ [zεn ]εn
∣∣∇vεn([yεn ]εn)− εm

∣∣ [zεm ]εm
∣∣∇vεm([yεm ]εm)

∣∣∣∣∣∣ [zεn ]εn − [zεm ]εm
∣∣∣ d(x, y). (5.6b)

∗This is a mere technicality to allow for a more compact notation of the estimates. Here, we do not
care about the details of the specific estimates, we only want to ensure convergence.
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To proceed in showing that these sequences are Cauchy sequences, several independent
estimates are needed to manage the right hand sides of inequalities (5.6a) and (5.6b).
In the following, we heavily rely on the estimates established by Lemma 4.2. With the
reverse triangle inequality, we get∣∣| [zεn ]εn | − | [zεm ]εm |

∣∣ ≤ ∣∣ [zεn ]εn − [zεm ]εm
∣∣, (5.7a)

Since eεmlvTv < 2, we also see that∣∣∣∣ [zεn ]εn

| [zεn ]εn |
− [zεm ]εm

| [zεm ]εm |

∣∣∣∣ ≤ 10 |[zεn ]εn − [zεm ]εm| . (5.7b)

Moreover, for fε = vε, ε∇vε, we can apply Lemma 5.3 to get∥∥fεn([yεn ]εn)− fεm([yεn ]εm)
∥∥2

L2(Ω×Y )

≤ Cm + C
(∥∥ [fεn ]εn − [fεm ]εm

∥∥2

L2(Ω×Y )
+
∥∥ [yεn ]εn − [yεm ]εm

∥∥2

L2(Ω×Y )

)
, (5.7c)

where limCm = 0. As yε is a cauchy sequence (it converges strongly to the identity
operator), it can also be estimated via a function Cm converging to 0. The matrix valued
function B, which is defined via equation (4.5), is Lipschitz continuous with Lipschitz
constant 2, i.e., ∣∣B([zεn ]εn)−B([zεm ]εm)

∣∣ ≤ 2| [zεn ]εn − [zεm ]εm
∣∣. (5.7d)

Adding inequalities (5.6a) and (5.6b), using the estimates given by inequalities (5.7a)
to (5.7c) as well as Assumption (A3), and applying Gronwall’s inequality, we infer∥∥ε−1

n [yεn − Id]εn − ε−1
m [yεm − Id]εm

∥∥2

L2(Ω×Y )
+
∥∥ [zεn ]εn − [zεm ]εm

∥∥2

L2(Ω×Y )

≤ Cm + C
(
‖[vεn ]εn − [vεm ]εm‖2

+
∥∥εn [∇vεn ]εn − εm [∇vεm ]εm

∥∥2
)

(5.8)

for all n,m ∈ N such that n,m > N for sufficiently large N ∈ N (which is independent of
ε and t). This implies

1

ε
[yε − Id]ε → y − Id, [zε]

ε → z in L2(S × Ω× Y )3.

Similarly, we also get (for more details, we refer to [Ede18, Lemma 6.21])

[Dyε]
ε → Dyy, ε [Dzε]

ε → Dyz in L2(S × Ω× Y )3×3.

Remark 5.5. As a consequence of Lemma 5.2, this implies

1

ε
[yε − Id]ε → y − Id, [zε]

ε → z in L2(S × Ω× Γ)3.

Lemma 5.6. The following convergences hold:

1

ε

[
y−1
ε − Id

]ε → y−1−Id, [qε]
ε → z(y−1), ε−1ϕ̃ε → ϕ̃, ε∇qε → ∇yq in L2(S×Ω×Y ).
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Proof. We recall that y−1
ε can be characterized by equation (4.14). This leads us to

d

dt

∥∥ε−1
n

[
y−1
εn − Id

]εn − ε−1
m

[
y−1
εm − Id

]εm ∥∥2

L2(Ω×Y )

≤
∫

Ω×Y

∣∣∣Dyεn(
[
y−1
εn

]εn
)−1 zεn(

[
y−1
εn

]εn
)

|zεn(
[
y−1
εn

]εn
)|
vεn(yεn(

[
y−1
εn

]εn
))

−Dyεm(
[
y−1
εm

]εm
)−1 zεm(

[
y−1
εm

]εm
)

|zεm(
[
y−1
εm

]εm
)|
vεm(yεm(

[
y−1
εm

]εm
))
∣∣∣

·
∣∣ε−1
n

[
y−1
εn − Id

]εn − ε−1
n

[
y−1
εn − Id

]εm ∣∣ d(x, y).

Taking into considerations the a-priori estimates available for the involved functions
and the strong convergence results formulated in Lemma 5.4, as well as the estimates
given in Lemma 5.3, it follows that ε−1 [y−1

ε − Id]
ε

is a Cauchy sequence. Similarly,
[qε]

ε = [zε(y
−1
ε )]

ε
is a Cauchy sequence due to Lemma 5.3 (2). Since ∂tϕ̃ε is governed

by equation (4.16) and since ∇ϕ̃ε = qε, we infer

d

dt

∥∥ε−1
n ϕ̃εn − ε−1

m ϕ̃εm
∥∥2

L2(Ω×Y )
≤
∫

Ω×Y

∣∣ |qεn| vεn − |qεm | vεm∣∣ d(x, y)

which shows that ε−1ϕ̃ε also converges strongly. Finally, as

ε∇qε = εD2ϕ̃ε = ε
(
Dyε(y

−1
ε )
)−1

Dzε(y
−1
ε ),

we also get the strong convergence of ε [∇qε]ε.

Since the quantity ε‖hε‖∞ + ‖∇Γεhε‖∞ is bounded indepedently of the parameter ε,
we can find a constant Ch > 0 such that

1√
ε
‖hε‖L2(S×Γε) +

√
ε‖∇Γεhε‖L2(S×Γε)3 ≤ Ch.

As a result, we conclude the existence of a function h ∈ L2(S × Ω;H1(Γ)) such that, up
to a subsequence,

1

ε
hε

2→ h, ∇Γεhε
2→ ∇Γh

Furthermore, it is clear that h ∈ L∞(S × Ω × Γ) and that [hε]
ε ∈ L∞(S × Ω × Γ) is

bounded independently of ε. As a consequence, there is a function h̃ ∈ L∞(S × Ω × Γ)
such that [hε]

ε ⇀ h̃ in L2(S × Ω× Y ). In the following, we are concerned with the limit
behavior of hε.

Lemma 5.7. There is h ∈ L2(S×Ω;H1
#(Γ)) such that ε−1 [hε]

ε → h and [∇Γεhε]
ε → ∇yh

in L2(S × Ω× Γ).

Proof. Let δ > 0 and n,m ∈ N, n > m. Using the representation of the height function
hε in terms of Fε,γ as given by equation (4.18), we have

∂thε(t, γ) = −∂tFε,γ(t, hε(t, γ))

∂2Fε,γ(t, hε(t, γ))
(t ∈ [0, Tv], γ ∈ Γε). (5.9)
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Now, integrating over Ω× Γ and testing with the difference ε−1
n [hεn ]εn − ε−1

m [hεn ]εm leads
to

d

dt

∥∥ε−1
n [hεn ]εn − ε−1

m [hεn ]εm
∥∥2

L2(Ω×Γ)

≤ 2

∫
Ω×Γ

∣∣∣∣ε−1
n

∂t [Fεn,γ(hεn)]εn

[∂2Fεn,γ(hεn)]εn
− ε−1

m

∂t [Fεm,γ(hεm)]εm

[∂2Fεm,γ(hεm)]εm

∣∣∣∣∣∣ε−1
n [hεn ]εn − ε−1

m [hεn ]εm
∣∣ d(x, γ).

Using that ∂tϕ̃ε is governed by equation (4.16) and qε = ∇ϕ̃ε , we get

ε−1∂t [Fε,γ(hε)]
ε = |qε([ηε]ε))| vε([ηε]ε). (5.10)

Applying Lemma 5.3(3) to qε and vε, respectively, and using the strong convergence of
[vε]

ε, [∇vε]ε, [qε]
ε, and ε [∇qε]ε, we are led to

∥∥ε−1
n ∂t [Fεn,γ(hεn)]εn − ε−1

m ∂t [Fεm,γ(hεm)]εm
∥∥2

L2(Ω×Γ)

≤ C(m) + C
(∥∥ [hεn ]εn − [hεm ]εm)

∥∥2

L2(Ω×Γ)
+
∥∥ε−1

n [hεn ]εn − ε−1
m [hεn ]εn

∥∥2

L2(Ω×Γ)

)
(5.11)

where limm→∞C(m) = 0. As a next step, we estimate the difference with respect to
∂2Fε,γ. In view of equation (4.17), we have

[∂2Fε,γ(hε)]
ε = g′(ε−1ϕ̃ε([ηε]

ε))qε([ηε]
ε) · n (5.12)

and, due to the strong convergence of ε−1 [ϕ̃ε]
ε, [qε]

ε = [∇ϕ̃ε]ε, and ε [∇qε]ε, we can infer
(again applying Lemma 5.3(3))

∥∥ε−1
n [∂2Fεn,γ(hεn)]εn − ε−1

m [∂2Fεm,γ(hεm)]εm
∥∥2

L2(Ω×Γ)

≤ Cm + C
(∥∥ [hεn ]εn − [hεm ]εm)

∥∥2

L2(Ω×Γ)
+
∥∥ε−1

n [hεn ]εn − ε−1
m [hεn ]εn

∥∥2

L2(Ω×Γ)

)
(5.13)

where limm→∞Cm → 0. Combining the estimates given by inequalities (5.11) and (5.13)
and applying Gronewall’s inequality, it is then easy to see that ε−1 [hε]

ε is, in fact, Cauchy.

Using the representation of hε given in equation (4.19), we have

[∇Γεhε]
ε =

(
I3 − ε−1 [hε]

ε LΓ

)(
n− 1

nΓε([ηε]
ε) · n

nΓε([ηε]
ε)

)
.

Consequently, since nΓε(ηε) · nε > 1/2 and |ε−1hε| ≤ a/10 in [0, Tv]× Γε, we are led to∥∥[∇Γεn
hεn
]εn − [∇Γεm

hεm
]εm∥∥

L2(S×Γε)

≤ 3

2a

∥∥ε−1
n [hεn ]ε − ε−1

m [hεm ]ε
∥∥
L2(S×Γε)

+ 6

∥∥∥∥ nεn([ηεn ]εn)

nεn([ηεn ]εn) · n
− nεm([ηεm ]εm)

nεm([ηεm ]εm) · n

∥∥∥∥
L2(S×Γε)
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Now, due to nΓε(ηε) = ∇ϕ̃ε(ηε)
|∇ϕ̃ε(ηε)| = qε(ηε)

|qε(ηε)| , we further estimate∥∥∥∥ nεn([ηεn ]εn)

nεn([ηεn ]εn) · n
− nεm([ηεm ]εm)

nεm([ηεm ]εm) · n

∥∥∥∥
L2(S×Γε)

≤ 6

∥∥∥∥ qεn([ηεn ]εn)

|qεn([ηεn ]εn)|
− qεm([ηεm ]εm)

|qεm([ηεm ]εm)|

∥∥∥∥
L2(S×Γε)

≤ 36 ‖qεn([ηεn ]εn)− qεm([ηεm ]εm)‖L2(S×Γε) .

As both [qε]
ε and ε [∇qε]ε converge, we can apply Lemma 5.3(3) and conclude∥∥[∇Γεn

hεn
]εn − [∇Γεm

hεm
]εm∥∥

L2(S×Γε)

≤ Cm +
3

2a

∥∥ε−1
n [hεn ]ε − ε−1

m [hεm ]ε
∥∥
L2(S×Γε)

+ C
(
‖[hεn ]ε − [hεm ]ε‖L2(S×Γε) +

∥∥ε−1
n [hεn ]ε − ε−1

m [hεm ]ε
∥∥
L2(S×Γε)

)
,

where, again, limm→∞Cm = 0.

We introduce ψε = sε − Id which implies (see equation (4.20) for the definition of sε)
Dψε = Dsε − 1.

Lemma 5.8. There is ψ ∈ L2(S × Ω;H1
#(Y )) such that ε−1 [ψε]

ε → ψ and such that
[∇ψε]ε → ∇yψ in L2(S × Ω× Y ).

Proof. Let n,m ∈ N such that m > n and set µε(t, x) = hε(t, PΓε(x)) as well as µ(t, x, y) =
h(t, x, PΓ(y)). We calculate

ε−1
n [ψεn ]εn − ε−1

m [ψεm ]εm =
(
ε−1
n [µεn ]εn − ε−1

m [µεm ]εm
)
χ
(
a−1dΓ

)
n(PΓ).

As a consequence,∫
Ω×UΓ

∣∣ε−1
n [ψεn ]εn − ε−1

m [ψεm ]εm
∣∣2 d(x, y)

≤
∫

Ω×UΓ

∣∣ε−1
n [µεn ]εn − µ

∣∣2 +
∣∣ε−1
m [µεm ]εm − µ

∣∣2 d(x, y).

Now, for fixed x ∈ Ω, [µε]
ε and µ are constant in the y variable in the direction of the

normal vector. As a consequence,∫
Ω×UΓ

∣∣ε−1 [µε]
ε − µ

∣∣2 d(x, y) = 2a

∫
Ω×Γ

∣∣ε−1
n [hεn ]εn − h

∣∣2 d(x, y).

The unfolded deformation gradient is given via (we refer to [PSZ13a, Section 2])

[∇ψε]ε = ([∇µε]ε)T n(PΓ)χ
(
a−1dΓ

)
+ ε−1 [µε]

ε
(
LΓ(PΓ) (I− dΓLΓ(PΓ))−1 (I− n(PΓ)⊗ n(PΓ))χ

(
a−1dΓ

)
+ χ′

(
a−1dΓ

)
n(PΓ)⊗ n(PΓ)

)
.
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which leads us to∫
Ω×UΓ

|[∇ψεn ]εn − [∇ψεm ]εm |2 d(x, y)

≤ C

∫
Ω×UΓ

∣∣ε−1
n [µεn ]εn − ε−1

m [µεm ]εm
∣∣2 + |[∇µεn ]εn − [∇µεm ]εm|2 d(x, y),

where C > 0 is independent of ε. Since

∇µε(t, x) = (DPΓε(x))T ∇Γεhε(t, PΓε(x))

and∫
Ω×UΓ

|[∇Γεhε(PΓε)]
ε (x, y)−∇yh(t, x, PΓ(y))|2 d(x, y)

= 2a

∫
Ω×Γ

|[∇Γεhεn ]εn −∇yh|2 d(x, y),

we can conclude [∇ψε]ε → ∇yψ.

Remark 5.9. Looking at the Definition of sε given via equation (4.20), it is then clear
that both Dsε and detDsε are also strongly two-scale convergent. Due to the uniform
boundedness in L∞, it is also clear that the limit functions are essentially bounded.
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[CDG08] D. Ciorănescu, A. Damlamian, and G. Griso. The periodic unfolding method
in homogenization. SIAM J. Math. Anal., 40(4):1585–1620, 2008.

[Che92] X. Chen. Generation and propagation of interfaces in reaction-diffusion sys-
tems. Trans. Amer. Math. Soc., 334(2):877–913, 1992.

[CR92] X. Chen and F. Reitich. Local existence and uniqueness of solutions of the
Stefan problem with surface tension and kinetic undercooling. J. Math. Anal.
Appl., 164(2):350–362, 1992.

[CS99] G.W. Clark and R.E. Showalter. Two-scale convergence of a model for flow in
a partially fissured medium. Electr. J. of Diff. Equations, 02:1–20, 1999.



340
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33(3):297–335, 1981.

[HKT08] P. Haj lasz, P. Koskela, and H. Tuominen. Sobolev embeddings, extensions and
measure density condition. J. Funct. Anal., 254(5):1217–1234, 2008.
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