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1 Introduction

In this paper, we extend the complex double Laplace transform to bicomplex double
Laplace transform in two bicomplex variables. In 1892, Corrado [6] defined bicomplex
numbers as

Cy ={&: & = xo + t1x1 +dowo + jas| 2o, 21, T2, x5 € R},

or
CQ = {f . f =21 —|—7:222| 21, %9 € Cl}

where i; and 7, are imaginary units such that i? = i3 = —1, i1y = 2y = j, j2 =1

and R, C; and C, are sets of real numbers, complex numbers and bicomplex numbers,
respectively. The set of bicomplex numbers is a commutative ring with unit and zero
divisors. Hence, contrary to quaternions, bicomplex numbers are commutative with some
non-invertible elements situated on the null cone.

In 1928 and 1932, Futagawa originated the concept of holomorphic functions of a bi-
complex variable in a series of papers [15], [16]. In 1934, Dragoni [9] gave some basic
results in the theory of bicomplex holomorphic functions while Price [8] and Rénn [23]
have developed the bicomplex algebra and function theory.

In recent developments, authors have done efforts to extend Polygamma function [22],
inverse Laplace transform, its convolution theorem [20], Stieltjes transform [18], Taube-
rian Theorem of Laplace-Stieltjes transform [21] and Bochner Theorem of Fourier-Stieltjes
transform in the bicomplex variable from their complex counterpart. In their procedure,
the idempotent representation of bicomplex plays a vital role.

In 1936, Van der Pol [25] introduced about the double Laplace transform. This has
been used by Humbert [17] in the study of hypergeometric functions; by Jaeger [12] to
solve boundary value problems in heat conduction. In 1951, Estrin et al. [24] extend
the complex double Laplace transform to multiple Laplace transform in n independent
complex variables. In 2008, Elatayeb and Kilicman [11] used double Laplace transform
for solving a second-order partial differential equations. In 2010, Kilicman and Gaddin
[4] discussed relationship between double Laplace transform and double Sumudu trans-
form. In 2013, Kashuri et al. [3] used double Laplace transform and double new integral
transform in solving partial differential equation.

For solving the large class of bicomplex partial differential equations, we need integral
transforms defined for large class. In this process we derive bicomplex double Laplace
transform with convergence conditions that can be capable the transferring signals from
real-valued (x,t) domain to bicomplexified frequency (£,7n) domain.

Idempotent Representation: Every bicomplex number can be uniquely expressed as a
complex combination of e; and ey, viz.

= (21 +122) = (21 — hhze)er + (21 +i120)eg,
(where e; = %,62 = %; e1 + e =1 and ejes = ege; = 0).
This representation of a bicomplex number is known as Idempotent Representation of
€. The coefficients (27 — i122) and (27 + i122) are called the Idempotent Components of
the bicomplex number & = 21 + 229 and {ey, es} is called idempotent basis.



257

Cartesian Set: The Auxiliary complex spaces A; and Ay are defined as follows:
Ay ={z1 —i120, V21,20 € C1}, Ay = {21 + 4120, ¥V 21,20 € Ci ]

A cartesian set determined by X; and X5 in A; and A, respectively is denoted as X7 X, Xo
and is defined as:

X1 Xe Xo = {21 + 929 € Co 1 21 +i929 = wreg + Waey, W1 € Xi,wy € X2}

With the help of idempotent representation, we define functions P, : Co — A; C Cy,
Py, : Cy — Ay C C; as follows:

P1<Zl + ’ing) = Pl[(Zl — i122>€1 + (Zl + 2'122)62} = (Zl — i122> € Al, Y 21+ 1929 € CQ,

PQ(Zl + iQZz) = PQ[(Zl — ilzg)el + (21 + ile)eg] = (21 + Z‘lzg) - AQ, \V/ 21 + iQZQ - (CQ.

In the following theorem, Price discuss the convergence of bicomplex function with
respect to its idempotent complex component functions. This theorem is useful in proving
our results.

Theorem 1.1 (Price [8]). F(§) = F.,(&1)er + Fe,(&2)es is convergent in domain D C Cy
iff F.,(&1) and F.,(&) under functions Py : D — Dy C Cy and Py : D — Dy C Cq are

convergent in domains Dy and D, respectively.

The organization of this paper is as follows:
In Section 2, we establish bicomplex double Laplace transform with convergence con-
ditions. In Section 3, we present some useful properties of bicomlex double Laplace
transform. In Section 4, we establish the inversion theorem for bicomplex double Laplace
transform. In section 5, we discuss applications of bicomplex double Laplace transform in
finding the solution of two-dimensional time-dependent bicomplex Schrodinger equation
and last Section 6 contains the conclusion.

2 Bicomplex Double Laplace Transform

Let f(x,t) be a bicomplex-valued function of two variables x,¢ > 0, which is piece-
wise continuous and has exponential order K; and K, w.r.t. x and ¢ respectively. The
bicomplex Laplace transform (see, Kumar and Kumar [5]) w.r.t. z is

Lif) = [ e ¥ = flen,  cemct, 1)
0
where
Q) ={£ =s161 +50e0 € Cy: Re(P: &) > Ky and Re(Py: &) > K} (2)
or

O ={£eCy : Re(§) > Ky + [Im;(£)[} (3)
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where Im;(&) denotes the imaginary part of £ w.r.t. j and (1) is convergent and analytic
in ;. Similarly, bicomplex Laplace transform of f(z,t) w.r.t. ¢ is

Lif@t] = [ et = flam).  necc ()
where
Qy = {n = pres + paey € Cy : Re(Py : 1) > Ky and Re(Py : 1) > K} (5)
or
Q= {neCy : Re(n) > K+ [Im;(n)[} (6)

where (4) is convergent and analytic in 25. Now, taking the bicomplex Laplace transform
of (1) w.r.t. ¢t and using (4), we have

Lulf(e.)] = Lif(,0)] = / e (e, tdt
= [ e [T e = few. €nen (7)

the integral on right hand side is convergent and analytic in
Q={(n)eC}: e andne D}. (8)
Now, we define the bicomplex double Laplace transform as follows:

Definition 2.1. Let f(z,t) be a bicomplex-valued function of two variables x,t > 0, which
18 precewise continuous and has exponential order Ky and Ky w.r.t. x and t respectively.
Then bicomplex double Laplace transform is defined as

Lotlf (2. D)(E) = / ) / e (o dedt = FEm), (6) €9

which ezists and is convergent for all (§,n) € Q as defined in (8).

3 Properties of Bicomplex Double Laplace Transform

In this section, we discuss some properties of bicomplex double Laplace transform viz.
linearity property, change of scale property, shifting property etc.

Theorem 3.1 (Linearity Property). Let f(x,t) and g(z,t) be two bicomplex-valued func-
tion of x,t > 0 such that

Lulf(z,0)] = [(&m),  (&m) €9
where Q = {(&,n) € C3 : Re(§) > Ky + |Im;(€)] and Re(n) > K + |Im;(n)|}

and Ly[g(z,t)] = g(&n),  (§,m) €
where Q = {(§,n) € C3 : Re(&) > K3 + |Im;(&)| and Re(n) > Ky + |Imj(n)|} .



259

Then,

Latler f(x,t) + cag(@,t)] = c1 Lot f (2, 1)] + c2Lat[g(w, 1)], (&n) eq
where Q@ ={(¢,n) € C5 : Re(§) > max(Ky, K3) + |[Im; ()|
and Re(n) > max(Ks, Ky) + |[Imj(n)|} and c1,cy are constants.

Proof. Applying the definition of bicomplex double Laplace transform,

Lyleif(x,t) + cog(z, t)] = /OO /OO e S Moy f(x,t) + cog(, t)]dadt

= 01/ e ST f (2, t) dxdt—l—cQ/ / —Sent g (g, t)dadt

e f(§ ) c29(&,m)-
Thus,

Lulerf(x,t) + cag(x, t)] = e1 L [f (2, 8)] + caLlut[g(x, t)].
]

Theorem 3.2 (Change of Scale Property). Let f(g,n) be the bicomplex double Laplace
transform of bicomplex-valued function f(x,t). Then

Lulf(az, B))(6,n) = f(f ”>, (em) €Q and . B> 0

where ) defined in (8).

Proof. From the definition of bicomplex double Laplace transform,

Lotlf (o, BO))(E, ) = / N / " e f (B dadt

= = —nt > —€x d d

/0 € (/0 e " f(az, Bt) x) t

:é /0 ot </0 e*%f('r, Bt)dr) dt [Taking ax = 7]
:l /°° _ntf (f 5t)

ozﬁ/ e gsf<— s) s [Taking St = 5]

Thus,
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Theorem 3.3 (First Shifting Property). Let f(f, n) be the bicomplex double Laplace trans-
form of bicomplex-valued function f(x,t). Then

Lot [ f(a, )] (6,m) = F(€ —a,n—b),  (E—an—b)€Q
where ) defined in (8).
Proof. Applying the definition of bicomplex double Laplace transform,

th ax+bt ,t ’ — - OO —&x—nt _ax+bt 7.[; dxdt
@) € = [ [ e i

/ e~ (b}t (/ e_(s_a)xf(x,t)dx) dt
0 0

o0

e~V F(e — a,t)dt

f(f_aan_b>

I
S—

Thus,

Lyt [e® ™ f(2,1)] (&,1) = (€ —a,n—b).
]

Theorem 3.4 (Double Laplace Transform of Derivatives). Let f(&,n) be the bicomplex
double Laplace transform of bicomplex-valued function f(x,t). Then

La [forle, 0] (€:0) = Enf(€m) — EF(6,0) = nf(0,m) + £(0,0),  (€,m) €Q
where ) defined in (8) and fu(x,t) = (%atf(a:,t).
Proof. Applying the definition of bicomplex double Laplace transform,

Lot [for(m,1)] = /0 e ( /0 et fut(, t)dx) dt

= /OO e M {( “E fy(2, ) —1—5/ e filw t)dx] dt
0

= _/000 e_"tft(O,t)dt+§/0 6_"t/0 fi(x, t)dzdt
— £(0,0) — =1t £(0, )d —nt (. )dt ) d
7(0,0) nA e wt+§A c (A f@t)Q .

zﬂ&m—nﬂQm+£Am€&[emﬂxﬂ) o[ a“ﬂawﬁ}m

ZfWJU—nﬂDm)—fzze*?ﬂ%OMx+€nK:bA e~ £ (i, £)dud

= £(0,0) — nf(0,n) — EF(€,0) + Enf(&,n).
Thus,

Lug [for(2,8)] (€,m) = Enf(E.m) — EF(E,0) — nf(0,n) + £(0,0).
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Theorem 3.5 (Multiplication by xt). Let f (&,1m) be the bicomplex double Laplace trans-
form of bicomplex-valued function f(x,t). Then

2

seg €1 (Em) €9 (a3 Q defined in (8))

L[t (2, 0)](§,n) =

Proof. Applying the definition of bicomplex double Laplace transform,

92 - 92 92
o161 = (Tt ) e+ (G Fateam) )

—5151? nt
(8{13771 / / Je, (x t)dxdt) el
—sz ?7215
(3528772/ / (x t)dxdt> €9

(Where F&m) = For(rm)er + fey(E2,m2)en, € = Erer + Eaes and 1 = 1re + 77262) :
Applying Leibniz’s rule for complex functions [13, p. 243], we have

2
8?@ f(€ 77 1)2 { (/ / a3 G 771t5(:tf ( )dmdt) e; +
(/Ooo/o —5290 nztxtfeQ(fE,t)d:Edt) 32}

o [ee]
- / / em@erteee- et el (£ (3 t)e; + f,, (v, t)es) dudt
0 0

:/ / e S Myt f () t)dadt.
o Jo

Thus,
2 _
In general,
aern _
Lo ™ (a0} (€m) = ()™ 5o e

]

Theorem 3.6 (Division by xt). Let f(f,n) be the bicomplex double Laplace transform of
bicomplez-valued function f(x,t). Then

Ly {f } / / F(&mydedn,  (&n) €Q

provided the integral on right hand exists.
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Proof. Applying the definition of bicomplex double Laplace transform,

f@mwaémlma&ﬂvaMMt (9)

Integrating (9) w.r.t. £ from £ to oo and 1 from 7 to 0o, we have

/i/)fén%M—/“/ |7 [ s s nanaacan
= / / / (_ ) e " f(x,t)dxdtdn
/m/m( ) (e m) :nf(x,t)dxdt

Oo/ooe—&v AC t)d dt
0 0

th{ (@) } (& n).

xt

L[ 28 em = [ [ Flemacan

Theorem 3.7 (Double Laplace Transform of Integrals). Let f(£,n) be the bicomplex
double Laplace transform of bicomplez-valued function f(x,t). Then

HU/fwwﬂ=%m,M&WWMﬂM>WML

g(x,t) = /Ox /Otf(u,v)dudv.

gzt(x,t) = f(x,t) and g(O 0) = 07

Now from the Theorem 3.4 we have

Lt [gui(,1)] = €ng (&, m) — €5(&,0) = ng(0,m) + ¢(0,0)
= fa(&§,n) = Enga(§,m) — £51(§,0) — ng1(0,7)

_ F(&m) 9(570) 9(0,m)

gi&m) = &n 7 " &

Thus,

]

Proof. Let

Hence, we have
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But g(¢,0) = 0 and g(0,n) = 0, therefore

g(&m) =

Hence,

Lut V: /Otf(u,v)dudv} - f(;”).

Theorem 3.8. Let f(x,t) be a periodic function of period K and T w.r.t. = and t
respectively. Then the bicomplex double Laplace transform is given by

]

KT o—go=nt £ #)dr
alfta, ) = Bl LTI ) > Yimy(e)) and Reta) > 1m0

Proof. Let f(x,t) be a periodic function with period K w.r.t. x. Then for { € C, and
Re(€) > |Im;(§)[, see Agarwal et al. [20]

K e—ta r,t)dr -
b DA e, (10)

La[f(z,1)] =

Similarly, for n € C, and Re(n) > |Im;(n)| taking the bicomplex Laplace transform of
(10) w.r.t. t, we have

LFED)] = Fe.n) = i”_f_(%t)dt

K _ x
_ 1 Te—nt Jy et f(x,t)dxdt
K fOT e St f(z, t)dxdt
(1—e K& (1 —eTm)

Thus,

K T e—€x—nt £( .
th[f($’ t)] B fo(lfg e*Kﬁ) (1f(_ ;t)jn)dt

4 Inversion

In this section, we derive the inversion theorem for bicomplex double Laplace trans-
form.
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Theorem 4.1. Let f(ﬁ, n) be the bicomplex double Laplace transform of bicomplez-valued
function f(x,t). Then

flot) =15 /n /F2 ST F(E m)dedn,  (€,m) €

where ) defined in (8) and I'y and T'y are Bromwich closed contours in bicomplex space.

Proof. Taking the inverse bicomplex Laplace transform [2] of f (&,m) wr.t. & we have

L] = Flam) = —— [ e f(e, e, (11)

2miy Jr,

Similarly, taking inverse bicomplex Laplace transform of (11) w.r.t. 1, we have

L F ) = flat) = —— [ oo myay

21

l/em/' & (¢, m)ddn.
2ml I, Iy

Hence,

flat) =gz [ [ e macan

5 Applications

In this section, we discuss applications of bicomplex double Laplace transform in find-
ing the solution of two-dimensional time-dependent bicomplex Schrodinger equation for
free particle by two different approaches. In first approach, we find the solution of above
equation by taking the bicomplex double Laplace transform under suitable initial and
boundary conditions w.r.t. spaces variables x and y and in second approach, w.r.t. space
variable = and time variable ¢.

Rochon and Tremblay [7] discussed the extension of time dependent time-dependent
complex Schrodinger equation in bicomplex form. In [20], Agarwal et al. discussed the
solution of one-dimensional time-dependent bicomplex Schrodinger equation for free par-
ticle using by bicomplex Laplace transform. In [1], Arnold discussed the solution of
two-dimensional time-dependent complex Schrodinger equation using by Fourier-Laplace
transform. In [14], Dehghan et al. discussed the numerical solution of two-dimensional
time-dependent Schrodinger equation.

Here, we discuss the solution of two-dimensional time-dependent bicomplex Schrédinger
equation for free particle. The one-dimensional time-dependent bicomplex Schrodinger
equation [7] is defined as

i hOab(x,t) + %6§¢(m, t) — V(z, t)(z,t) =0, (12)
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where

Y :R* =5 Cyand V : R* = R.
We extend the above one-dimensional equation in two dimensions as

2

im&wa%w+§gaﬁﬂa%w+%w@yﬁ)—wm%ﬂwm%ﬂzo, (13)

where
Y :R* - Coand V : R®* = R,
with initial and boundary conditions
?ﬂ(l’,y,()) = h(l’,y), ¢(anat) = fl(yat)> ¢(9U>O,t) = gl(xat)a

For free particle V(z,y,t) = 0, (13) becomes

2

iWhow(x,y, t) + 2h_ (8£¢(m, y,t) + 85@0(@ Y, t)) =0. (15)

(a) Taking bicomplex double Laplace transform of (15) w.r.t. = and y, we have

/ / 6=, By (2, g, 1) mw+/‘/ el 8%uyw

+ 0§w(x,y, t)) dedy = 0
d - 2 = . ;
= Zlfid_t@D(f) 7, t) :l— % <(§2 + 772) ¢(€7 7, t) - §¢(07 1, t) - mﬁ(f} 07 t)
—%(07 U t) - %(57 0, t)) =0
(Where O(Em,t) = L,y [¢(x,y,t)] is bicomplex double Laplace transform of ¢(z, y, t)> :

Applying the boundary conditions (14), we get

ilhﬁ+%((52 )0 = ER0.0) =03 (6,8) = Falnt) — 92(€.1)) =
Wi (@ ) = g (A1) + g€ 1) + B ) + (6. 1).

Rearranging the terms and simplifying, we get
et = =iz (g € 47) ) oo (=g (€ 4+47)1) (€00
+ng1(&,t) + f2(n, ) + 2(&, 1)) dt + cexp (11% (& +77) t) : (16)
Letting ©(£,1,0) = h(¢, ) in (16) we have

= (e +ing [[xp (i (€407) ) (i) 4 n(60) + ol 0) + u(e.0)

=p&n)  (say). (17)

t=0
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Therefore, (16) becomes
12(5777775) = —i1% exp <Z1% (& +n) t) /exp (—11 n (& +n7) ) (&fr(n,t)+
ngi (&) + fa(n,t) + G2(&, 1)) dt + B(E,m) exp (11% (& +n) t) : (18)

Taking the inverse bicomplex Laplace transform of (18), we have

ooty = =gz [ [ e semenn (g @ +)t) + A0 dean (19

where,
h h h _
A(E,n,t) = _ilﬁ exp (@1% (& +n) t) /GXP <—i1% (& +7) t) (&f1(n,t)

and I'y and I'y are closed contours in bicomplex space w.r.t. £ and 7 respectively. (19) is
the solution of two-dimensional time-dependent bicomplex Schrodinger equation for free
particle.

For illustration, let us consider the initial and boundary conditions for equation (15)

. (2 2w 2m C4hm? )\ . (27
77D(ZE, Y, 0) = sl (TI‘) cos (7y> ) 77Z)a:(07 y’t) - T exp (_Zlmt> Sl (Ty) )

P(0,y,t) =0, Y(x,0,t) =0, Py(x,0,t) = 2%Texp (—ilﬁt) sin (?w) ) (20)

as

mA?
Then (19) becomes

2 xp (i1 (€2 +n?) ¢
st g [ A

) {7+ (5)

" / i 2 27”1( i 1P (13 (€ +7°)1)
Iy <§’2 ) )

21\ + (= n—ir 3¢ (n+ %)
4 lim ewTEP (i3 (€ +7%)1) dg
n——ip 2T (77 - 1127”)

-1 “ exp <Z g ( 2 47T2) t) o <2wy) ds
TN (24 (22 om \& A2 By

! cos (27T )2 ' li 6& e ( n ( 2 47T2>t)
=—= — i im ——exp|i1— - —

NN )T G e a) P Mem N
o e ()

im ——exp|i1— - —
E——in &8 (5 — 1 2;) P\ "am A2
C4hm? )\ . (2« 2

=exp | —1u m)\Qt Sin Tx COS Ty .
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Therefore,

Ahr? 2 2
Y(x,y,t) = exp (—il m; t) sin (Tﬂx) cos <Tﬂy> ) (21)
Expression in (21) is the solution of two-dimensional time-dependent bicomplex Schrodinger
equation (15) for initial and boundary conditions (20).

(b) Consider the two-dimensional time-dependent bicomplex Schrodinger equation (15)
for free particle with the condition

(z,y,t) is bounded as |y| — oo and x > 0, ¢t > 0. (22)

Taking the bicomplex double Laplace transform of (15) w.r.t. = and ¢, we get

/ / T B (s, y, t)dady + / / et ”t 8%(@“ Y1)

+ 92 (x,y,t)) dedy = 0
_ R, - _ _
= zlh( (& ym) = (6, 9,0)) + 5 (£9(6,ym) — E6(0,y.m) — (0, y.m))

2

2— &(Syn)—O

w
:> —_—
dy?
Rearranging the terms and solving, we get
= , . 2mm , . 2mm
V(& ym) = crexp | yy[ =€ —ii—— | Fepexp | —yy /=€ —ii—

1
e (€ 0%

2 2
[Where Re <P1 4] =& — 10y 7;;77> > 0 and Re <P2 i)=& — 10y Tg”) > 0] )

(&, y,n) is bounded as |y| = 0o = ¢; = ¢, = 0. Then (23) becomes

) b= i 206, ,0) + E60,y.m) + 60,0.).

+ (50600 4 GO 40 9

1
d2
? + (62

Dy = vy (W HE L0 SO u HE0un) 2

Taking the inverse bicomplex Laplace transform of (24), we get

V(@ y,t) = =15 /n /r2 e HMP(E, y,m)dEdn (25)

where I'; and I'y are closed contours in bicomplex space w.r.t. £ and 7 respectively. (25)
is the solution of two-dimensional time-dependent bicomplex Schrédinger equation (15).
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For illustration, let us consider the initial and boundary conditions for equation (15)
as

Y(x,y,0) = sin (2;:17) sin (%Ty) , ¥(0,y,t) =0

2 Ahr? 2
V. (0,y,t) = TW exp (—2’1 m; t) sin (Tﬂy) : (26)

Then (25) becomes

1 o 2m gsetnt 2m 1 1
x,y,t) = — sin 11— + déd
¢( Yy ) 4772 /1_‘1 )\ ( )\ y) 52 + '1 Zmn 472 ( 1 h 52 + 4/\L22 /,7 _ Z 4hm2 ) 5 n

BVE L'ma2
m ot / / 6§x+77t

= — sm d&dn

Yh ( ) roJr, (2 +0 20 — A7) (24 4%)
27 / / st

— ——sin - 5 d&dn

2A ( ) rode (8403 - 2) (n— i 257)
= Il + _[2. (say) (27>

Now,

f ) erm s e s
— i sin (X = .
FEERNTT YY) e (e iy (e ) B
m 27 1
R =" 2 Ex li nt d
leh)\ sin ( A y) / i 2m21€ nﬁﬂ-l(jglfgz)i (6 £2 4 ﬁ) $

=_—— sm ( ) A 52 47r2 exp (—z’l% <4_7T22 _ 52) t) d¢

2miy [ hm exp

E—i1 2T Y 5“‘21

+ hm — exp < f <4l — 2) t)]
E—— Z1 5_ -]_ >\2
. 4hr . (27 s
= exp <—11Wt) sin <7x> sin (Ty) .

Therefore,

4w\ . (27 . [ 2m
I = exp (—@1 7 t) sin (Tx) sin <7y> . (28)
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Similarly,

I . (27r ) / / plrt déd
— —~sin o ia — ey d€dn
’ 2mA ryJry (€24 2 — A2 (n — iy 2

(2 / (exp (ir 422 ht) — exp (i X550 ) ) i«
= — in| —
AN N2E2 — 1272
—0. (29)

Using (28) and (29) in (27), we get

Ahr? 2 2
Y(z,y,t) = exp <—z’1 m; t) sin (773:) sin (;y) ) (30)

Expression in (30) is the solution of two-dimensional time-dependent bicomplex Schrodinger
equation (15) under the conditions given in (22) and (26).

6 Conclusion

In this paper, we derived the bicomplex double Laplace transform and its inverse. The
applications have been illustrated to find the solution of two-dimensional time-dependent
bicomplex Schrodinger equation by using two different approaches. Moreover, similar to
work of Rochon and Tremblay [7], under some discrete symmetries two-dimensional time-
dependent bicomplex Schrodinger equation can be decomposed into two standard two-
dimensional Schrédinger equation. Therefore, solution of two standard two-dimensional
Schrodinger equations can be obtained by separating the solution of two-dimensional
time-dependent bicomplex Schrodinger equation.
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